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1. INTRODUCTION

The free vibration of an undamped linear elastic structure carrying any number of lumped
springs and masses has received considerable interest in recent years, and has been studied
by many authors. The most commonly used approaches to obtain the natural frequencies of
such systems include the Lagrange multipliers approach [1}3], the dynamic Green function
scheme [4}6], and the assumed modes method [7}9]. In all of the systems considered in
references [1}9], no damping was present. Recently, GuK rgoK ze and Erol [10] investigated the
eigenvalues of a longitudinally vibrating rod carrying tip mass and viscously damped
spring}mass in-span. They "rst solved the frequency equation exactly, and then used the
Lagrange's equations in conjunction with the Lagrange multipliers formalism to obtain the
approximate frequency equation. Although the results are concise, the inherent natural of
the Lagrange multipliers formalism misses certain eigenvalues when the damped oscillator
is located at a node of any normal mode of the rod. In addition, the Lagrange multipliers
approach can be fairly laborious to apply, because S Lagrange multipliers need to be
introduced and additional S constraint equations need to be formulated, where S is the
number of distinct attachment locations. More recently, Chang et al. [11] utilized
the Laplace transform with respect to the spatial variable to analyze the free vibration of
a simple beam carrying point masses, grounded springs and grounded viscous
dampers. While conceptually simple, the approach is rather tedious to apply because
one needs to perform an inverse Laplace transform and enforce the boundary conditions
to obtain the characteristic equation, the steps of which can be very algebraically intensive.
In addition, the resulting characteristic equation is complicated, lengthy and di$cult to
code.

In this technical note, the discretized governing equations for a linear elastica carrying
a number of lumpedmasses, springs and viscous dampers (see Figure 1) are "rst obtained by
using the common assumed-modes method. Manipulating the characteristic determinant
that governs the eigenvalues of the system, the characteristic determinant can be
algebraically reduced to one of a smaller size, thus providing an alternative means to solve
for the eigenvalues of the combined structure. The advantages of the proposed scheme will
be discussed and highlighted. The utility of the proposed technique will be demonstrated by
considering various example problems, and the results will be compared to known
numerical and analytical solutions.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. An arbitrarily supported, linear elastic structure carrying any number of lumped masses, grounded
springs and grounded viscous dampers.
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2. THEORY

Consider the free vibration of an arbitrarily supported, linear elastic structure carrying
nm lumped masses, nk grounded translational springs and nc grounded viscous dampers as
shown in Figure 1, where all the lumped elements are assumed to be attached at distinct
locations. Using the assumed-modes method [12], the physical de#ection of the structure at
a point x is given by
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where �
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(x) are the eigenfunctions of the linear structure (the elastica without any lumped

attachments) that serve as the basis functions for this approximate solution, �
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corresponding generalized co-ordinates, and N is the number of modes used in the
assumed-modes expansion. The total kinetic energy of the combined system is given by
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whereM
�
are the generalized masses of the linear elastica,m

�
is the ith lumped mass, x�

�
is its

location, and an overdot denotes a time derivative. The total potential energy is given by
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where K
�
are the generalized spring constants of the linear elastica, k

�
is the sti!ness of the

ith grounded spring, and x�
�
represents its location. The Rayleigh's dissipation function for

the combined structure is
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where c
�
is the ith viscous damping coe$cient and x�

�
is its location.
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Substituting equation (1) into equations (2)}(4) and applying Lagrange's equations,

d

dt �
�¹

��R
�
�!

�¹

��
�

#

�<
��

�

#

�R
��R

�

"0, i"1, 2,2, N (5)

the equations of motion for the system of Figure 1 can be readily obtained. After some
algebra, they are found to be governed by the homogeneous matrix equation
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Matrices [M�] and [K�] are both diagonal, whose elements are the generalized masses and
sti!nesses, M

�
and K

�
respectively. It should be noted that both [M] and [K] consist of

a diagonal matrix modi"ed by nm and nk rank one matrices, respectively, and that [C]
consists of the sum of nc rank one matrices. Finally, all three system matrices are symmetric
and of size N�N.

Because equation (6) represents a homogeneous set of ordinary di!erential equations
with constant coe$cients, its solution has the exponential form

�
�
(t)"�N

�
e��, (10)

where � is a constant scalar and �N
�
is a constant vector. Inserting equation (10) into equation

(6) leads to
���[M]#[C]�#[K]��N

�
e��"0

�
. (11)

Because an exponential can never be zero, in order to have a non-trivial solution for �N
�
, the

exponent � must satisfy the following characteristic determinant:

det ���[M]#[C]�#[K]�"0. (12)

Expanding equation (12) leads to a 2N order polynomial in �. Once the coe$cients, the �
�
's,

of the polynomial are found and properly stored in a vector �
�
, where the 2N#1 coe$cients

are arranged such that �
�
to �

��	�
correspond to the coe$cients of the highest to the lowest

power in �, then the �'s can be readily solved using any prepackaged code such as rpzero in
CMLIB [13] or roots in MATLAB. Unfortunately, while conceptually simple, to the best
knowledge of the present author, there is no code that expands equation (12) directly, and
constructs the properly arranged vector of coe$cients, �

�
.

The constant scalar � can also be obtained by using a state-space approach, which
e!ectively replacesN coupled second order di!erential equations by 2N coupled "rst order
ordinary di!erential equations as follows [12]. A state vector of length 2N is introduced,
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such that equation (6) can be rewritten in a form that consists of 2N simultaneous "rst order
ordinary di!erential equations as

[A]qR
�
(t)![B]q
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(t)"0

�
, (14)

where matrices [A] and [B] are both symmetric and are given by
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Because equation (14) is homogeneous, its solution is given by
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Substituting equation (16) into equation (14) yields the 2N�2N generalized eigenvalue
problem
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�
, (17)

where � corresponds to the eigenvalue of the system. Equation (17) can be readily solved by
using any existing prepackaged code such as rsg in EISPACK or eig in MATLAB.

In this technical note, an alternative approach is introduced to obtain the eigenvalues for
the system of Figure 1. Instead of expanding equation (12) and then solving for the roots or
eigenvalues, the �'s, of the resulting 2N order polynomial, equation (12) can be manipulated
into a form that is immediately amenable to the solution scheme introduced in reference
[14]. Substituting equations (7)} (9) into equation (12) leads to
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Expanding equation (18), we have
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which can be shown [14] to be identical to
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where theK
�
andM

�
represent the ith element of [K�] and [M�], and the (i, j )th element of

[B], of size n�n is given by
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and � 

�
represents the Kronecker delta. The product terms of equation (23) are signi"cant

because they serve as a reminder that when the attachment locations for the lumped
elements coincide with the nodes of any component mode, �

�
(x), then some of the

eigenvalues, the �'s, of the combined system will be identical to j, the complex unity, times
the natural frequencies of the linear structure (the elastica without any lumped
attachments). Physically, this simply means that when the attachment locations coincide
with the nodes of any component mode, some natural frequencies of the combined system
will be identical to those of the linear structure.

When the system is undamped, i.e., c
�
"0, then the eigenvalues � are purely imaginary,

implying that the system executes simple harmonic motion, consistent with physical
intuition. In this case, �"j�, where � represents the undamped natural frequency of the
system, and equations (23) and (24) reduce to
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the same results as equations (8) and (9) of reference [14]. The natural frequencies, �, can be
readily obtained graphically by plotting f (�) as a function of � and locating the zeros of
f (�). They can also be solved numerically using any existing subroutine such as zeroin in
CMLIB or fzero in MATLAB.

When damping is present, the problem becomes more interesting, because the
eigenvalues may now be complex. Thus, a complex solution of the form

�"�
�
#j�

�
(27)

is assumed from the outset, where �
�
and �

�
correspond to the real and imaginary parts of

� respectively. In this case, the eigenvalues, �, can be obtained graphically by examining the
surface plot of 
 f (�) 
 , i.e., the magnitude of the complex function f (�), as a function of �

�
and

�
�
. The zeros of the surface plot correspond to the solution of f (�)"0. Alternatively, the

eigenvalues can also be computed numerically. Substituting equation (27) into equations
(23) and (24), setting the real and imaginary parts of the resulting function equal to zero, and
solving them simultaneously using existing codes such as snsqe in CMLIB or fsolve in
MATLAB, the complex eigenvalues can be readily obtained.

The proposed scheme of determining the eigenvalues, the �'s, of a linear elastica carrying
any number of lumped masses, grounded springs and grounded viscous dampers o!ers
numerous advantages. Firstly, equation (23) is simple to code and compact. Given the
eigenfunctions, �

�
(x), of the linear elastica, the parameters for the masses, springs and

dampers, m
�
, k

�
and c

�
, and the attachment locations, x�

�
, x�

�
and x�

�
, equation (23) can be
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easily programmed. Moreover, the resulting characteristic determinant (see equation (23))
is substantially more concise compared to equation (8) of reference [11]. Secondly, the
proposed method lends itself easily to a graphical means of solving for the �'s. Thirdly, the
�'s can also be easily solved numerically by using any existing prepackaged code. Finally,
the approach outlined in this note can be extended to accommodate any linear elastic
structure with any arbitrary boundary conditions by simply using the appropriate
eigenfunctions.

3. RESULTS

To show the utility of the proposed scheme, the eigenvalues of a uniform simply
supported Euler}Bernoulli beam carrying any number of lumped elements are computed,
and the results are compared to published values in reference [11], where the system para-
meters are as follows: �"1)6363�10� kg/m (mass per unit length); E"2)756�10�� N/m�

(Young's modulus); ¸"15)24m (length of beam); and I"6)0482m� (area moment of
inertia of the cross-section). In all of the subsequent numerical examples, N"40 (the
number of component modes used in the assumed modes method), and because MATLAB
is easy to code, MATLAB routines are used to solve for the eigenvalues. Speci"cally, when
the system is undamped, MATLAB routine fzero is used and when the system is damped,
MATLAB routine fsolve is called. For a simply supported beam, its normalized (with
respect to �) eigenfunctions are given by
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¸

(28)

such that the generalized masses and sti!nesses of the beam become

M
�
"1 and K

�
"(i�)�EI/(�¸�). (29)

Consider "rst the case of a uniform simply supported Euler}Bernoulli beam carrying one
concentrated mass, m

�
, at x�

�
, in which case equation (25) reduces to the simple frequency

equation
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Table 1 compares the "rst three natural frequencies obtained by solving equation (30) and
those given in reference [11]. Since the attachment location, x�

�
"0)5¸, coincides with the
TABLE 1

¹he ,rst three natural frequencies of a simply supported, uniform Euler}Bernoulli beam
carrying a mass, m

�
"0)1�¸, at 0)5¸

� (rad/s) Reference [11] Present (N"40)

�
�

1)237859e#002 1)237859e#002
�

�
5)425147e#002 5)425144e#002

�
�

1)127885e#003 1)127887e#003



TABLE 2

¹he ,rst three natural frequencies of a simply supported, uniform Euler}Bernoulli beam
carrying a grounded spring, k

�
"0)1��EI/¸�, at 0)5¸

� (rad/s) Reference [11] Present (N"40)

�
�

1)485370e#002 1)485370e#002
�

�
5)425147e#002 5)425144e#002

�
�

1)222167e#003 1)222166e#003

TABLE 3

¹he ,rst three natural frequencies of a simply supported, uniform Euler}Bernoulli beam

carrying a grounded damper, c
�
"0)3���EI�/¸�, at 0)5¸

� (rad/s) Reference [11] Present (N"40)

�
�

!4)090648e#001$1)296947e#002 j !4)090650e#001$1)296946e#002 j
�
�

!1)331735e!012$5)425147e#002 j 0$5)425144e#002 j
�
�

!4)061522e#001$1)217792e#003 j !4)061524e#001$1)217791e#003 j
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node of the even component modes of a uniform simply supported beam, equation (30)
reminds us (see the product terms) that all the even natural frequencies of the combined
system are identical to those of the simply supported beam. Thus, ��

�
"(2�)�EI/(�¸�).

From Table 1, note the excellent agreement between the results of equation (30) and the
solution given in reference [11].

Consider now the case where the simply supported beam is carrying a grounded spring,
of sti!ness k

�
, at x�

�
"0)5¸, in which case equation (25) simpli"es to
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Table 2 compares the results given in reference [11] and those obtained by solving equation
(31). Note the excellent agreement between the two solutions. Because the attachment point
is at the midspan, as expected, the second natural frequency of the combined system
coincides with the second natural frequency of the simply supported Euler}Bernoulli beam.

Next, consider the case where a grounded viscous damper, of damping coe$cient c
�
, is

attached to a uniform simply supported Euler}Bernoulli beam at x�
�
"0)5¸. The

eigenvalues of this particular system is given by
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Because there is damping in the system, the eigenvalues will necessarily be complex. Table 3
compares the "rst three eigenvalues obtained by solving equation (32) and those given in
reference [11]. Note again how well the present results track those listed in reference [11].

Table 4 shows the "rst three eigenvalues of a uniform simply supported beam, to which
one lumped mass, m

�
, one grounded spring, k

�
, and one grounded viscous damper, c

�
, are



TABLE 4

¹he ,rst three natural frequencies of a simply supported, uniform Euler}Bernoulli beam
carrying a concentrated mass, m

�
"0)1�¸, a grounded spring, k

�
"0)1��EI/¸�, and

a grounded damper, c
�
"0)1���EI�/¸�, all at 0)5¸

� (rad/s) Reference [11] Present (N"40)

�
�

!1)130626e#001$1)351799e#002 j !1)130627e#001$1)351799e#002 j
�
�

!4)177324e!012$5)425147e#002 j 0$5)425144e#002 j
�
�

!8)482803e#000$1)128716e#003 j !8)482364e#000$1)128718e#003 j

Figure 2. A "xed-free, longitudinally vibrating elastica carrying a tip mass and a viscously damped oscillator
in-span.
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attached at 0)5¸. For this particular case, the complex eigenvalues are obtained by solving
equation (23). From Table 4, note the excellent agreement between the results of equation
(23) and those given in reference [11].

To further illustrate the versatility of the proposed approach, consider the system of
Figure 2, which consists of a linear elastica carrying a tip mass and viscously damped
spring}mass in-span. This particular system was analyzed by GuK rgoK ze and Erol [10], who
used the Lagrange multipliers formalism to obtain the frequency equation of the system.
Here, it will be shown that the proposed approach can be extended to obtain the same
frequency equation with simple algebraic manipulations. For the system of Figure 2, the
total kinetic energy, the total potential energy and the Rayleigh's dissipation functions are
given by
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Applying Lagrange's equations, the following equations of motion are obtained:
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where �
� �

corresponds to �
�
(x) evaluated at x"a¸, and
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Assuming an exponential solution,
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equation (36) becomes
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Using the last equation of equation (41) to obtain an expression for zN in terms of �N
�
yields
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Substituting the above into the top equation of equation (41) leads to
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After some algebra, equation (43) reduces to
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For a non-trivial solution, the exponent � must satisfy
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Note that equation (45) has the same form as equation (18). Using the results derived
previously, the characteristic determinant of equation (45) can be immediately reduced to
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When the eigenfunctions,�
�
(x), are properly normalized with respect to the mass per unit

length, �, of the linear elastica, the generalized masses and sti!nesses become M
�
"1 and

K
�
"��

�
, where �

�
represents the rth natural frequency of the elastica, in which case

equation (47), upon expansion, becomes
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Comparing equations (48) and (18) of reference [10], notice the absence of the product
terms. When the attachment location of the damped oscillator is not at a node of any
normal mode of the linear elastic structure, then ��

�
#��O0, for i"1,2 ,N, and equation

(48) reduces to equation (18) of reference [10]. Thus, using the proposed scheme, the
frequency equation can be easily obtained, without the complexity associated with applying
the Lagrange multipliers formalism outlined in reference [10].

The proposed approach also has an added bene"t in that it allows all of the eigenvalues
to be computed regardless where the attachment point is located. Because the Lagrange
multipliers approach only leads to the characteristic determinant of equation (47) (see
reference [10] for a detailed derivation), it &&misses'' some eigenvalues when the attachment
point is at a node of any normal mode of the linear elastic structure. While this di$culty
disappears if the linear elastica is arti"cially disassembled [2], additional work is required
to recover these missing eigenvalues. The product terms that are present in equation (48)
alleviate the aforementioned di$culty. In particular, the product terms signify that when
the attachment point coincides with a node of any normal mode, then some of the natural
frequencies of the combined system will be exactly the same as those of the linear structure.
Thus, the proposed approach leads to a frequency equation that yields all of the eigenvalues
of the system, even when the attachment point of the damped oscillator coincides with
a node of any normal mode of the linear elastica.

4. CONCLUSIONS

An alternative formulation is proposed that can be used to determine the eigenvalues of
a linear elastic structure carrying any number of concentrated masses, springs and viscous
dampers. The proposed scheme leads to several noticeable advantages. Speci"cally, the
proposed approach leads to a reduced characteristic determinant that is compact and
simple to code; the method can be easily extended to accommodate any linear elastic
structure with any boundary conditions; the scheme leads to a formulation such that the
eigenvalues can be easily solved either graphically or numerically using any prepackaged
code. Numerical experiments were performed to validate the proposed approach, and
excellent agreements were found between the proposed scheme and known solutions
published in the literature.
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